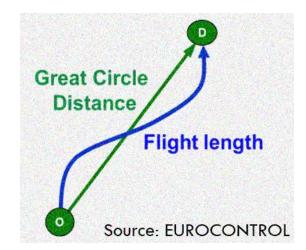
Climate Change and the Role of Air Traffic Control

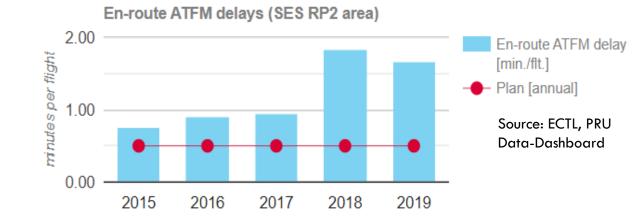
ECONOMIC ESTIMATES OF THE CLIMATE COSTS OF THE AVIATION SECTOR DUE TO AIR MANAGEMENT: INSIGHTS FOR 2018 AND 2019

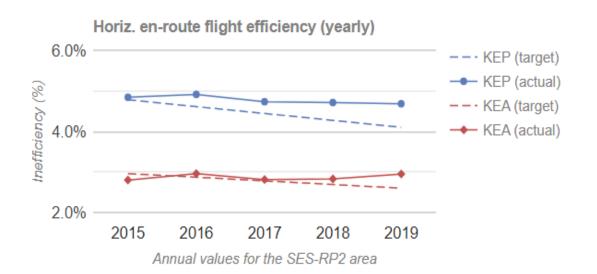
Ibon Galarraga, Herbert Pümpel, Luis M^a Abadie, Itziar Ruiz-Gauna, Néstor Goicoechea



Universidad del País Vasco Euskal Herriko Unibertsitatea The University of the Basque Country

FLIGHT EFFICIENCY AND THE ENVIRONMENT


- Aviation: 1 Gt CO_2 in 2019 2.8% of global emissions from fossil fuel combustion
- <u>ANSPs</u> ensure that aircraft on the ground and in the air keep safely apart by prescribing vertical and horizontal distances to each other
 - \circ Regulation \rightarrow In EU: performance scheme (targets for key performance areas)
 - Environment: 2015-2019 (RP2) → reduce the actual trajectory of a flight to minimize fuel consumption
 → improvements for the Key Performance Environment indicator based on KEA
- In the assessment of **horizontal flight efficiency** (HFE) targets, all planned network changes were considered
 - A higher HFE measurement usually means a more direct flight trajectory → but not necessarily a climate optimal trajectory
 - Other variables needs to be considered → Vertical flight efficiency +
 Wind, temperature conditions, the presence of significant weather along the route and the possible occurrence of contrails



FLIGHT EFFICIENCY AND THE ENVIRONMENT

- There is also an interdependency between the different Key Performance Areas → Link between Airspace, Air Traffic Management Capacity and Environment
 - When the offered capacity falls short of the demand for flights, ground delays, holdings and traffic shifts to adjacent areas occur. This entails de-tours and a deterioration of the HFE-indicator

 For actual HFE, it should be noted that the target of 2.78% of KEA was met in 2017 but afterwards deteriorated to 2.95%, which was a clear reflection of the shortfall of capacity and the increase in delays

FLIGHT EFFICIENCY AND THE ENVIRONMENT

• How changes in HFE can be translated into costs

KEA comparisons betwee	n target an	d actual
2017	2018	2019

KEA (target)	2.78	2.69	2.60
KEA (actual)	2.78	2.83	2.95
Difference	0.00	0.24	0.35

PPR (2020): an improvement of 0.1 points in HFE leads to savings of 5.4 million NM (or 9.9 million km) in distance

ADDITIONAL DISTANCE FLOWN PER YEAR

- <u>2017</u>: 0 NM additional distance flown
- <u>2018</u>: 2.4 4 x 5.4 million NM = 12.96 million NM
- <u>2019</u>: 3.5 x 5.4 million NM = 18.9 million NM

In the period 2018 to 2019, 31.86 million NM was flown beyond optimal distances as a result of capacity constraints

THE ENVIRONMENTAL COST

• AVOIDANCE COSTS: Climate change avoidance costs in Euros per tonne of CO2 equivalent


Forecast	Low	Medium	High	_
Short and medium run (up to 2030)	63	105	199	(adjusted from € 2016 to € 2019 prices) Source: ECTL Standard Inputs for economic
Long run (from 2040 to 2060)	164	283	524	analysis, edition 9

- Carbon cost of that extra distance flown up to 2030 (112 million EUR using the medium value) and from 2040 to 2060 (301 Million EUR)
- But CO₂ emissions account for only 34% of the total climate impact \rightarrow total **environmental costs of aviation** for 2018 and 2019: to be ranging from **336 to 903 million EUR**
- EUROPEAN EMISSIONS TRADING SCHEME (EU ETS): as aviation is one of the sectors included in the EU ETS since 2012, the price of carbon will be determined by the market
 - Price of CO2 in the future market (2021-2027) \rightarrow carbon cost by 2030 (54 Million EUR) and for the long-run (153.5 million EUR)
 - Total environmental costs of aviation to be ranging from 162 to 460.5 million EUR

RISK OF A VOLATILE CARBON PRICE

- As the aviation sector in the EU is affected by EU ETS, changes in the price of carbon may represent and additional risk that should be managed
 - The volatility of EU ETS is considerable
 - Thus: stochastic diffusion model

From March 2018 to February 2021

• Results for carbon price risk:

Expiring	Dec-2025			
Volatility	$\sigma = 0.4764$	$\sigma = 0.25$	$\sigma = 0.125$	
Percentile 90% €/tonne	101.69	79.04	62.99	
Percentile 10% €/tonne	8.84	21.94	33.18	

If the volatility remains high and similar to its historical values $(\sigma=0.4764)$, in 80% of cases prices will be between 8.84 and 101.69 \in /tonne, but in 10% of cases the price will be greater than 101.69 \in /tonne.

With lower volatility are less likely that in the medium term the future carbon prices will be significantly high compared to today.

FINAL CONSIDERATIONS

- 1. A shortfall of capacity leads to delay costs (Abadie, Galarraga & Ruiz-Gauna, 2021) and environmental costs → capacity is planned in the medium to long-term, so traffic forecasts are a crucial element
 - Further research into the interdependency of traffic forecasts, capacity and environmental costs
- 2. A vertical flight efficiency measure is also a very important aspect of operations \rightarrow aircrafts burn more fuel when flying at lower altitude as a result of capacity constraints
 - ECTL Network Manager: so-called "level caps" \rightarrow an aircraft can be told to fly at a lower level than usual
 - The number of occasions when environmentally friendly procedures such as Continuous Descent Operations (CDO) and Continuous Climb Operations (CCO) has fallen by some 5 to 10%
 - This has also caused additional fuel burn. However, this cannot be quantified with the current available data.
- 3. Emerging challenges for ATM due to imminent effects of **climate change** and **variability**.
 - It requires a highly flexible and well-trained staff of ANSP, and a close cooperation with meteorological service providers to minimize adverse effects
- 4. One should not ignore the role that **volatility of carbon prices** may play for the calculation of the environmental cost → stochastic modelling can help to better understand the risks associated to carbon pricing volatility. Fortunately, the existence of CO2 markets may allow to hedge this risk

